CCSU DEPARTMENT OF MATHEMATICAL SCIENCES

COLLOQUIUM

Friday, September 26 3:00 – 4:00 PM Maria Sanford, Room 101

FOLDING CARPENTER'S RULES, ROBOT ARMS, PROTEINS: FROM GEOMETRY TO COMBINATORICS

ILEANA STREINU

SMITH COLLEGE

ABSTRACT

The Carpenter's Rule problem, first appearing in the topology community in the mid '70s and then in Computer Science in the '90's as a robot arm motion planning problem, asks whether every simple planar polygon with fixed edge lengths can be reconfigured continuously between two positions, without producing any self-intersections along the way. The solution is a mixture of ideas from geometry, rigidity theory and polyhedral combinatorics, all leading to a curious (but nice and friendly) object, called a pseudo-triangulation.

A main attraction of this talk is its graphical appeal: every concept I define is elementary, depicted graphically (with lots of two- and three-dimensional props) and easy to understand. The "protein" part of the title leads to the future, to one of the major problems in science today (protein folding): I will conclude telling you what the connection between folding a robot arm and a protein is, and where this research is leading to.

For further information: <u>gotchevi@ccsu.edu</u> 860-832-2839 http://www.math.ccsu.edu/gotchev/colloquium/