CCSU

DEPARTMENT OF MATHEMATICAL SCIENCES

 COLLOQUIUMFriday, September 7 2:00 - 3:00 PM Maria Sanford, Room 101

ROTATIONALLY SYMMETRIC EMBEDDED SURFACES WITH CONSTANT MEAN CURVATURE IN THE THREE-DIMENSIONAL UNIT SPHERE
 OSCAR PERDOMO
 CENTRAL CONNECTICUT STATE UNIVERSITY

Abstract

An embedded surface is a surface without self-intersections. A torus is a surface topologically equivalent to the surface of a doughnut. The three dimensional sphere is the most basic example of a 3-D universe with no boundary and finite volume. Mathematically it can be described as the set of points in R^{4} that are 1 unit away from the origin. Minimal surfaces are surfaces with mean curvature 0 . They play an important role in geometric because they are the critical points of the functional area. For a long time, it has been known that the surface $$
C=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}^{2}+x_{2}^{2}=1 / 2 \text { and } x_{3}^{2}+x_{4}^{2}=1 / 2\right\}
$$ is topologically a torus, it is embedded, it is contained in S^{3} and it is minimal in S^{3}. C is known as the Clifford torus. Mathematician wondered for a long time if they could find another embedded example of a minimal torus in S^{3}. Actually, Lawson conjectured that the Clifford torus is the only embedded example. In 2009, the speaker studied rotationally symmetric tori with constant mean curvature $\mathrm{H}_{\text {in }} \mathrm{S}^{3}$ and showed the existence of a big collection of embedded examples. The following picture shows the stereographic projection of two of these tori

Recall that the stereographic projection of a surface in S^{3} is a surface in the Euclidean space R^{3}.
In April of this year, Brendle provided a short proof of the Lawson conjecture. Using similar methods, in June of this year, Andrews and Li showed that every embedded surface in S^{3} is rotationally symmetric. In this talk we will prove that the only rotationally symmetric surfaces in S^{3} are those found by the speaker three years ago. As a consequence we have that the only embedded tori with constant curvature in S^{3} are those discovered by the speaker.

For further information:

gotchevi@ccsu.edu 860-832-2839
http://www.math.ccsu.edu/gotchev/colloquium/

