CCSU
 DEPARTMENT OF MATHEMATICAL SCIENCES
 VIRTUAL COLLOQUIUM

Friday, September 4 3:00-4:00 PM

https://ccsu.webex.com/meet/gotchev
FIBONACCI NUMBERS AND QUADRATIC INTEGERS ROGER BILISOLY CENTRAL CONNECTICUT STATE UNIVERSITY

Abstract: In these challenging times, there is nothing better to lift one's spirits than the Fibonacci numbers, the famous sequence defined by $F_{n}=F_{n-1}+F_{n-2}$, and $F_{1}=F_{2}=1$. We will begin with a derivation of Binet's formula using hierarchical regression, a technique from statistics. In doing so we will see there is an intimate connection between $2^{\text {nd }}$ order, linear recurrence relationships, $f_{n}=a f_{n-1}+b f_{n-2}$, and the monic quadratic, $x^{2}-a x-b$, where a and b are integers. For example, the Fibonacci numbers are associated with $x^{2}-x-1$, which can be used to derive Binet's formula. However, fans of algebraic number theory know that solving $x^{2}-a x-b=0$ defines the quadratic integers, and the rest of this talk shows some results arising from this link. For instance, for φ, the Golden Ratio, $Z[\varphi]=\{a+b \varphi: a, b \in Z\}$ is the ring of algebraic integers of $Q[\sqrt{5}]$. The group of units of $Z[\varphi]$ are isomorphic to $Z_{2} \times Z$, which is an example of Dirichlet's Unit Theorem. In conclusion, if you enjoy things like φ, rational approximation, and Pell's equation, this talk is for you.

