
CCSU
DEPARTMENT OF MATHEMATICAL SCIENCES

COLLOQUIUM

Friday, February 25
2:00 – 3:00 pm in MS 101

Type Isomorphism and
Program Isomorphism

Carlos C. Martinez
Wesleyan University

Abstract

Unification has been a fruitful subject in logic an d automated

deduction. The unification problem can be stated as finding substitutions
(instantiations of free variables) of two given ter ms that equalize the terms
under some equality notion. Matching is the particu lar case when one of the
terms is closed.
 Two types A and B are said to be isomorphic i f there is an invertible
term having type A -> B. It is natural to want to b e sensitive to type
isomorphism when one is doing higher-order rewritin g, in particular if one is
interested in code transformation. For example, sup pose one wants to perform
a transformation with a certain function-pattern of type A -> (B -> C). The
use of standard higher-order matching allows us to ignore the names of the
arguments in a code fragment potentially matching t he pattern. However, the
order in which these parameters appear in the code is significant, since it
determines the code's type. Since the type B -> (A -> C) is isomorphic to the
original, a code fragment of this type may very wel l be a candidate that we
want to consider.
 Indeed, what we require is a richer notion of ma tching which accepts a
match as long as the term being matched is the same as the target term modulo
a type isomorphism. That is, type isomorphism indu ces a notion of equality
on terms, more lenient than the usual equality, and it is this equality that
we will use to guide our matching.

For further information:

gotchevi@ccsu.edu (860) 832-2839

