CCSU DEPARTMENT OF MATHEMATICAL SCIENCES Monday, February 12, 2007 11:00-12:00 Maria Sanford, Room 117

Compact-open-like topologies on C(X)

Vasil Gochev WESLEYAN UNIVERSITY

SpFi is the category of spaces with filters: an object is a pair $(\mathbf{X}, \mathcal{F})$, where **X** is a compact Hausdorff space and \mathcal{F} is a filter of dense open subsets of **X**. A morphism $f: (\mathbf{Y}, \mathcal{F}') \longrightarrow (\mathbf{X}, \mathcal{F})$ is a continuous map $f: \mathbf{Y} \longrightarrow \mathbf{X}$ for which $f^{-1}(F) \in \mathcal{F}'$ whenever $F \in \mathcal{F}$. For every object $(\mathbf{X}, \mathcal{F}) \in \mathbf{SpFi}$ is defined a family $\{\tau_s | S \in \mathcal{F}_{\delta}\}$ of "compact in S - open" topologies C(X), where $\mathcal{F}_{\delta} \equiv \{ \cap F_n | F_1, F_2, F_3 \dots \in \mathcal{F} \}$. Every element τ_S of that family has its closure operator cl_S and its convergence structure λ_S and these yield same information. On C(X) we form $\tau^{\mathcal{F}} = \bigwedge \{ \tau_S | S \in \mathcal{F}_{\delta} \},\$ $cl^F = \bigvee \{ cl_s | S \in \mathcal{F}_{\delta} \}$, and $\lambda^F = \bigvee \{ \lambda_S | S \in \mathcal{F}_{\delta} \}$. It now is unclear what are the properties of the structures C(X) with $\tau^{\mathcal{F}}, cl^{\mathcal{F}}, \lambda^{\mathcal{F}}$ and what are the relations between these structures? In this talk we will give some partial answers to these questions.