CCSU department of mathematical sciences COLLOQUIUM

Friday, March 14 2:00 – 3:00 PM Maria Sanford, Room 101

ON THE LENGTH OF FAULT-FREE CYCLES IN FAULTY HYPERCUBES

IVAN GOTCHEV

CENTRAL CONNECTICUT STATE UNIVERSITY

ABSTRACT

When f "faulty" vertices of the same parity are deleted from the *n*-dimensional binary hypercube Q_n , the length of the longest fault-free cycle cannot exceed $2^n - 2f$. Some authors have found upper bounds for the values of f for which a fault-free cycle of length at least $2^n - 2f$ exists. The best result known so far was the following theorem of J-S. Fu: If $n \ge 3$ and $0 \le f \le 2n - 4$ then for any set of vertices F in Q_n of cardinality f there exists a cycle in $Q_n \setminus F$ of length at least $2^n - 2f$. This result was known to be sharp only for n = 3 and n = 4.

We improve the above result as follows: If $n \ge 5$ and f are integers with $0 \le f \le 3n - 7$ then for any set of vertices F in Q_n of cardinality f there exists a cycle in $Q_n \setminus F$ of length at least $2^n - 2f$.

We also provide an example showing that if $n \ge 4$ then there exists a set F of $f = \frac{n(n-1)}{2} - 1$ vertices such that the maximal length of a cycle in $Q_n \setminus F$ is less than $2^n - 2f$. In particular, this example shows that our result cannot be improved when n = 5.

This example and the above two results motivate the following conjecture (which is clearly a theorem when n = 4 and n = 5).

Conjecture: Let $n \ge 4$ and f be integers with $0 \le f \le \frac{n(n-1)}{2} - 2$. Let also F be a set of vertices in Q_n of cardinality f. Then there exists a cycle in $Q_n \setminus F$ of length at least $2^n - 2f$.

For further information:

gotchevi@ccsu.edu 860-832-2839 http://www.math.ccsu.edu/gotchev/colloquium/