CCSU

DEPARTMENT OF MATHEMATICAL SCIENCES

COLLOQUIUM

Friday, April 20 2:00-3:00 PM
Maria Sanford, Room 101

THE REPRESENTATION PROBLEM FOR INHOMOGENEOUS QUADRATIC POLYNOMIALS

ANNA HAENSCH

WESLEYAN UNIVERSITY

Abstract

A polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, with integer coefficients is said to represent an integer a, if the equation $$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a
$$ is solvable in the integers. Hilbert's 10 Problem asks: Is there a finite algorithm to determine if $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ represents an integer a ? Due to work of J. Robinson, M. Davis and H. Putnam in the 1960's, and J. Matijasevič in the 1970's, the answer, in general, is no.

Given a linear polynomial, then a well known algorithm exists, namely the Euclidean algorithm. More difficult, is the representation problem for quadratic polynomials, which asks for an effective determination of all integers represented by a given quadratic polynomial. This problem has a rich history and has been widely studied. One related problem asks, can we determine when a quadratic polynomial represents all natural numbers? What about all but finitely many? Polynomials satisfying such conditions are called universal, or almost universal, respectively. Imposing some mild arithmetic conditions, I will give a complete characterization of inhomogeneous quadratic polynomials, which are almost universal. This generalizes the recent work by Chan and Oh on almost universal ternary sums of triangular numbers.

For further information:

gotchevi@ ccsu.edu 860-832-2839
http://www.math.ccsu.edu/gotchev/colloquium/

