CCSU department of mathematical sciences COLLOQUIUM

Friday, March 22 2:00 – 3:00 PM Maria Sanford, Room 101

AROUND WEYL'S UNIFORM DISTRIBUTION MODULO ONE

DIKRAN DIKRANJAN

UDINE UNIVERSITY, ITALY

<u>Abstract</u>: Let $\mathbf{m} = (m_n)$ be a one-to-one sequence of integers. According Weyl's theorem the sequence $(m_n \alpha)$ is uniformly distributed modulo one for almost all $\alpha \in \mathbb{R}$. More precisely, passing to the circle group $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, the set

 $W_{\mathbf{m}} = \{ \alpha \in \mathbb{T} : (m_n \alpha) \text{ is uniformly distributed in } \mathbb{T} \}$

is a Borel set of full measure in \mathbb{T} . The talk is dedicated to the "complement" (to a certain extent) of Weyl's set $W_{\rm m}$, namely the set

 $C_{\mathbf{m}} = \{ \alpha \in \mathbb{T} : \lim_{n} m_{n} \alpha = 0 \text{ in } \mathbb{T} \}.$ (*)

The sets of the form (*) have been studied in descriptive set theory, number theory, topology and analysis (in connection to trigonometric series). Even if C_m is not exactly the complement of W_m , it shares many of its properties (e.g., it is Borel set of measure zero in T) and it is a *subgroup* of T (unlike W_m).

The talk will discuss many examples as well as some general results (e.g., for the Fibonacci sequence **m** the subgroup $C_{\mathbf{m}}$ of \mathbb{T} is cyclic, generated by the Golden Ratio $\alpha = \frac{1+\sqrt{5}}{2}$). One can prove that every countable subgroup of \mathbb{T} has the form (*) for an appropriate sequence $(m_n\alpha)$, yet:

- many F_{σ} -subgroups of \mathbb{T} may fail to have this form;
- many subgroups of the form (*) may fail to be F_{σ} -sets (e.g., for $m_n = n!$, or $m_n = 2^{2^n}$).

For further information: gotchevi@ccsu.edu 860-832-2839 http://www.math.ccsu.edu/gotchev/colloquium/