DEPARTMENT OF MATHEMATICAL SCIENCES

COLLOQUIUM

Friday, March 1
2:00-3:00 PM
Maria Sanford, Room 101

A CHARACTERIZATION OF QUADRIC CONSTANT SCALAR CURVATURE HYPERSURFACES OF SPHERES

OSCAR PERDOMO
 CENTRAL CONNECTICUT STATE UNIVERSITY

Joint work with Guoxin Wei, South China Normal University, Rep. of China

Abstract

Let $S^{4}=\left\{x \in R^{5}:|x|=1\right\}$ be the unit 4-dimensional sphere. Easy examples to define in this manifold are $M_{1}(c)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in S^{4}: x_{5}=c\right\}$ where $c \in(-1,1)$ and $M_{2}(r)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in S^{4}: x_{4}^{2}+x_{5}{ }^{2}=r^{2}\right\}$ where $r \in(0,1)$. It is not difficult to see that $M_{1}(c)$ is a 3-dimensional sphere with radius $\left(1-\mathrm{c}^{2}\right)^{1 / 2}$ and $\mathrm{M}_{2}(\mathrm{r})$ is the Cartesian product of a circle of radius r and a 2-dimensional sphere of radius $\left(1-\mathrm{r}^{2}\right)^{1 / 2}$. Up to rigid motions, a quadratic hypersurface in S^{4} is a hypersurface that can be written as $\mathrm{M}_{2}(\mathrm{r})$ for some r. Due to its large group of symmetries, both families of hypersurfaces $\mathrm{M}_{1}(\mathrm{c})$ and $\mathrm{M}_{2}(\mathrm{r})$ have constant scalar curvature.

Let us consider a hypersurface $M \subset S^{4}$. For every point $x \in M$, the tangent space $T_{x} M$ is a three dimensional space in R^{5} which can be shown is perpendicular to the vector x. Therefore, the vector space

$$
\mathrm{W}(\mathrm{x})=\left\{\mathrm{v}+\lambda \mathrm{x}: \mathrm{v} \in \mathrm{~T}_{\mathrm{x}} \mathrm{M}, \lambda \in \mathrm{R}\right\}
$$

is a 4-dimensional space of R^{5}. By basic linear algebra we know that up to a sign, there exists a unique vector $\mathrm{N}(\mathrm{x})$ in R^{5} that is perpendicular to the vector space $W(x)$. When M is orientable, we can choose a continuous function $N: M \rightarrow R^{5}$, such that $N(x)$ has norm 1 and $N(x)$ is perpendicular to $W(x)$. This map is called a Gauss map. In this talk we will present the following result

Theorem (Perdomo-Wei, to appear in the Journal of Geometric Analysis): Let $\mathrm{M} \subset \mathrm{S}^{4}$ is a complete (topologically complete space) orientable hypersurface with constant scalar curvature and let $\mathrm{N}: \mathrm{M} \rightarrow \mathrm{R}^{5}$ be its Gauss map. If for some fixed vector $v \in R^{5}$ and some real number λ, we have

$$
<\mathrm{N}(\mathrm{x}), \mathrm{v}>=\lambda<\mathrm{x}, \mathrm{v}>\text { for all } \mathrm{x} \in \mathrm{M}
$$

then, up to a rigid motion, M is equal to either $M_{1}(c)$ for some c or $M_{2}(r)$ for some r.
(Here $\langle u, w\rangle=u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}+u_{4} w_{4}+u_{5} W_{1}$ is the standard inner product in R^{5}.)

