CCSU department of mathematical sciences COLLOQUIUM

Friday, March 1 2:00 – 3:00 PM Maria Sanford, Room 101

A CHARACTERIZATION OF QUADRIC CONSTANT SCALAR CURVATURE HYPERSURFACES OF SPHERES

OSCAR PERDOMO CENTRAL CONNECTICUT STATE UNIVERSITY

Joint work with Guoxin Wei, South China Normal University, Rep. of China

<u>Abstract</u>: Let $S^4 = \{x \in R^5 : |x|=1\}$ be the unit 4-dimensional sphere. Easy examples to define in this manifold are $M_1(c) = \{(x_1, x_2, x_3, x_4, x_5) \in S^4 : x_5 = c\}$ where $c \in (-1, 1)$ and

 $M_2(r) = \{(x_1, x_2, x_3, x_4, x_5) \in S^4: x_4^{2+} + x_5^{2} = r^2\}$ where $r \in (0,1)$. It is not difficult to see that $M_1(c)$ is a 3-dimensional sphere with radius $(1-c^2)^{1/2}$ and $M_2(r)$ is the Cartesian product of a circle of radius r and a 2-dimensional sphere of radius $(1-r^2)^{1/2}$. Up to rigid motions, a quadratic hypersurface in S^4 is a hypersurface that can be written as $M_2(r)$ for some r. Due to its large group of symmetries, both families of hypersurfaces $M_1(c)$ and $M_2(r)$ have constant scalar curvature.

Let us consider a hypersurface $M \subset S^4$. For every point $x \in M$, the tangent space T_xM is a three dimensional space in R^5 which can be shown is perpendicular to the vector x. Therefore, the vector space

$$W(x) = \{ v + \lambda x : v \in T_x M, \lambda \in R \}$$

is a 4-dimensional space of \mathbb{R}^5 . By basic linear algebra we know that up to a sign, there exists a unique vector N(x) in \mathbb{R}^5 that is perpendicular to the vector space W(x). When M is orientable, we can choose a continuous function $N:M \rightarrow \mathbb{R}^5$, such that N(x) has norm 1 and N(x) is perpendicular to W(x). This map is called a Gauss map. In this talk we will present the following result

Theorem (Perdomo-Wei, to appear in the Journal of Geometric Analysis): Let $M \subset S^4$ is a complete (topologically complete space) orientable hypersurface with constant scalar curvature and let $N:M \rightarrow R^5$ be its Gauss map. If for some fixed vector $v \in R^5$ and some real number λ , we have

< N(x),v > = λ <x , v> for all x \in M

then, up to a rigid motion, M is equal to either $M_1(c)$ for some c or $M_2(r)$ for some r. (Here $\langle u, w \rangle = u_1 w_1 + u_2 w_2 + u_3 w_3 + u_4 w_4 + u_5 w_1$ is the standard inner product in \mathbb{R}^5 .)

> For further information: gotchevi@ccsu.edu 860-832-2839 http://www.math.ccsu.edu/gotchev/colloquium/