CCSU department of mathematical sciences COLLOQUIUM

Friday, March 4 3:00 – 4:00 PM Maria Sanford, Room 101

PREPARATION OF 3-QUBIT STATES OSCAR PERDOMO

CENTRAL CONNECTICUT STATE UNIVERSITY

Joint work with Nelson Castaneda and Roger Vogeler

Abstract: A classical computer with 3 bits has 8 states, they are [000>, [001>, [010>, [011>, [100>, [101>, [101>, [110> and [111>. With a few gates it is easy to change from any state to another. A quantum computer with three quantum bits (three qubits) has infinitely many possible states. More precisely, the possible states are

 $z_1[000> + z_2 \ [001> + z_3 \ [010> + z_4 \ [011> + z_5 \ [100> + z_6 \ [101> + z_7 \ [110> + z_8 \ [111>]])$ where the z_k are complex number satisfying $\sum_{k=1}^8 |z_k|^2 = 1$. The z_k 's are called the amplitudes. Gates that only act on one of the three qubits are called local gates, and gates that interact with more than one qubit are called non-local gates. The controlled-Z gates act on two qubits and it is known that any circuit can be built using local gates and controlled-Z gates. We say that a circuit prepares a particular qubit state if this circuit takes the qubit [000> to the given qubit state.

In contrast with a classical computer, the problem of finding optimal circuits (circuits that use the least number of controlled-Z gates) that takes any qubit state into another is so difficult that even for a quantum computer with only three qubits, the problem remains open.

We call a pure qubit state real if all its amplitudes are real numbers. In this talk we show that any real 3-qubit state can be prepared using local gates represented with real numbers and at most four controlled-Z gates. We conjecture that four is optimal. We also present an algorithm---different from the 2008 algorithm given by Znidaric, Giraud and Georgeot---that prepares any 3-qubit state using local gates and at most three controlled-Z gates. Videos showing how our method works for two- and three-qubit states can be found at https://youtu.be/LIdYSs-rE-o and https://youtu.be/LIdYSs-rE-o and https://youtu.be/LIdYSs-rE-o and https://youtu.be/Kne0Vq7gyzQ.

To join us online use the following link: <u>https://ccsu.webex.com/meet/gotchev</u>

For further information: gotchevi@ccsu.edu; 860-832-2839; https://web.ccsu.edu/colloquium/