TAKE-HOME EXAM 1

Solve the following problems showing all your work for full credit.

- **1.** Use the universal set $U = \{a, b, c, d, e, f\}$, $A = \{a, b, e, f\}$, and $B = \{b, c, d, e\}$ to find each set:
- a) (1 pt.) $A \cap B$
- b) (1 pt.) $A \cup B$
- c) (1 pt.) \overline{B}
- **2.** (4 pts.) Let $P(x) = 3x^3 x^2 + x 2$ and D(x) = x 2. Use long division to find the quotient Q(x) and the remainder R(x) such that $P(x) = D(x) \cdot Q(x) + R(x)$.

- **3.** Factor each polynomial completely.
- a) $(1 \text{ pt.}) x^2 100$
- b) (2 pts.) $x^2 + 6x 16$
- c) $(3 \text{ pts.}) 7x^3 7x$
- d) (3 pts.) $x^4 x^3 + x 1$

4. Simplify each expression. Assume that all variables represent positive numbers.

a) (2 pts.)
$$\frac{x^2 - 5x + 6}{x^2 + x - 12}$$

b) (3 pts.)
$$\frac{1-x}{x} + \frac{3-x}{x-2}$$

c) (3 pts.)
$$\frac{x^2 - 4x + 4}{x^3 + 4x} \cdot \frac{3x^2 + 12}{x^2 - x - 2}$$

5. Find all solutions of each equation.

a)
$$(3 \text{ pts.}) 3 + 2|3x - 1| = 9$$

b)
$$(4 \text{ pts.}) \frac{1}{x-1} + \frac{1}{x+2} = \frac{5}{4}$$

c) (3 pts.)
$$(x-2)(x+1)=3$$

d) (3 pts.)
$$\sqrt[3]{2x+1} = -2$$

e) (3 pts.)
$$\sqrt{15-2x} = x$$

6. Solve each inequality. State the solution set using interval notation.

a)
$$(2 \text{ pts.}) 4-5x \ge -6$$

b) (3 pts.)
$$2|x-1|+5>7$$

c)
$$(3 \text{ pts.}) |2x-1| \le 5$$

d)
$$(3 \text{ pts.}) - 6 \le 2x - 4 < 5$$

7. Rationalize the denominator of each expression:

a)
$$(1 \text{ pt.}) - \frac{\sqrt{3}}{\sqrt{7}}$$

b) (3 pts.)
$$\frac{\sqrt{2}}{\sqrt{5}+2}$$

- **8.** Write an equation of the line
- a) (2 pts.) containing the points (2, 5) and (-1, 11)
- b) (3 pts.) containing the point (3, -2) and parallel to the line 3x y = 1
- c) (3 pts.) containing the point (3, -2) and perpendicular to the line -x + 2y = 2

9. Find the domain of each function using interval notation.

a)
$$(2 \text{ pts.}) f(x) = \frac{3}{x^2 - 4x + 3}$$

b) (2 pts.)
$$P(x) = \frac{6}{\sqrt{2x-4}}$$

c) (3 pts.)
$$g(t) = \frac{\sqrt{t+3}}{t-5}$$

10. (5 pts.) Let $f(x) = 3x^2 - 2x + 1$. Find and simplify completely the difference quotient $\frac{f(x+h) - f(x)}{h}$

11. Determine algebraically whether each function is even, odd or neither even nor odd.

a) (2 pts.)
$$f(x) = 2x^4 - 5x^2$$

b) (2 pts.)
$$g(x) = \frac{2x}{x^2 - 1}$$

c)
$$(2 \text{ pts.}) h(t) = t^3 + 5$$

12. Let
$$f(x) = \frac{2x - 6}{x - 2}$$

- **12.** Let $f(x) = \frac{2x-6}{x-2}$ a) (2 pts.) Is the point $(\frac{1}{2}, \frac{10}{3})$ on the graph of f(x)?
- b) (2 pts.) If x = 6, what is f(x)? What point is on the graph of f(x)?
- c) (3 pts.) If f(x) = 1, what is x? What points are on the graph of f(x)?
- d) (2 pts.) What is the domain of f(x)?
- e) (2 pts.) List the x-intercepts, if any, of the graph of f(x).
- f) (3 pts.) List the y-intercept, if there is one, of the graph of f(x).
- 13. (5 pts.) Sketch the graph of the piecewise-defined function f(x)

$$f(x) = \begin{cases} 3 & , & x \le -3 \\ 2x + 4 & , & -2 \le x < 1 \\ 4 - x & , & 1 \le x \end{cases}$$

Label all x - and y - intercepts and all special points.