TAKE-HOME EXAM 1

Solve the following problems showing all your work for full credit.

1. Find the antiderivative F(x) + C for each of the following:

a) (2 pts.)
$$f(x) = 3x^{\frac{2}{3}}$$

b) (2 pts.)
$$f(x) = 3x^2 + \sqrt{x}$$

c) (3 pts.)
$$f(x) = x^2(x^3 + 5x^2 - 3x + \sqrt{3})$$

d) (3 pts.)
$$f(x) = \frac{\sqrt{2x + x^2}}{x^4}$$

2. Evaluate the integral:

a) (2 pts.)
$$\int (e^{3x} + 4^x) dx$$

b) (3 pts.)
$$\int \frac{s(s+1)^2}{\sqrt{s}} ds$$

c)
$$(2 \text{ pts.}) \int (t^2 - 2\cos t) dt$$

d) (2 pts.)
$$\int \frac{x^2 + 5x + 6}{x + 3} dx$$

e)
$$(2 \text{ pts.}) \int (\pi x^3 + 1)^4 3\pi x^2 dx$$

f) (3 pts.)
$$\int (5x^2 + 1)\sqrt{5x^3 + 3x - 2}dx$$

g) (3 pts.)
$$\int \frac{3y}{\sqrt{2y^2 + 5}} dy$$

3. (2 pts.) Given
$$\int_{0}^{3} f(x)dx = 4$$
 and $\int_{8}^{0} f(x)dx = -10$, find $\int_{3}^{8} f(x)dx$.

4. Evaluate the definite integral:

a) (2 pts.)
$$\int_{1}^{3} (3x^2 + 5x - 4) dx$$

b) (3 pts.)
$$\int_{1}^{4} (3 - |x - 3|) dx$$

c) (2 pts.)
$$\int_{-\pi/2}^{\pi/2} (2t + \cos t) dt$$

d) (2 pts.)
$$\int_{0}^{1} \cos(4x-4) dx$$

e) (3 pts.)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \sin^2(x^3) \cos(x^3) dx$$

f) (3 pts.)
$$\int_{2}^{3} \frac{x^2 + 1}{(x - 1)^4} dx$$

g) (2 pts.)
$$\int_{-\pi/4}^{\pi/4} (\sin^5 x + x^2 \tan x) dx$$

5. (3 pts.) Find the area of the region bounded by the graphs of the equations $y = 1 + \sqrt[3]{x}$, x = 0, x = 8, y = 0.

6. Find the area of the region bounded by the graphs of the functions:

a) (3 pts.)
$$y = -\frac{3}{8}x(x-8)$$
, $y = 10 - \frac{1}{2}x$, $x = 2$, $x = 8$

b) (3 pts.)
$$y = \sqrt[3]{x}$$
, $y = x$

c) (3 pts.)
$$x = y^2 - 2y$$
, $x - y - 4 = 0$

d) (3 pts.)
$$x = 4y^4$$
, $x = 8 - 4y^4$

- **8.** Find the volume of the solid generated by revolving the region bounded by the graphs of the functions
 - a) (3 pts.) y = 6x and $y = 6x^2$ about the x-axis;
 - b) (3 pts.) xy = 6, y = 2, y = 6 and x = 6 about the line x = 6;
 - c) (3 pts.) $y = x^2$ and $y = 4x x^2$ about the line x = 2;
 - d) (3 pts.) $y = \sqrt{x}$, y = 0 and x = 4 about the line x = 6.
- **9.** (3 pts.) Find the arc length of the graph of the function $y = \frac{x^4}{8} + \frac{1}{4x^2}$ over the interval [1,2].
- **10.** Set up and evaluate the definite integral for the area of the surface generated by revolving the curve
 - a) (3 pts.) $y = \frac{x^4}{8} + \frac{1}{4x^2}$, $1 \le x \le 3$ about the x-axis;
 - b) (3 pts.) $x = \sqrt{2y-1}$, $\frac{5}{8} \le y \le 1$, about the y-axis.