CCSU department of mathematical sciences COLLOQUIUM

Friday, August 30 3:00 – 4:00 PM Maria Sanford, Room 101

NEW CMC HYPERSURFACES ON SPHERES

OSCAR PERDOMO CENTRAL CONNECTICUT STATE UNIVERSITY

Abstract: Let us denote by $S^m(r)$ the *m*-dimensional sphere with radius *r*. We also denote $S^m = S^m(1)$. Recall that S^1 is the unit circle, S^2 is the unit sphere in the 3-dimensional space R^3 , and in general, S^m is the collection of points in the (m + 1)-dimensional Euclidean space R^{m+1} that are one unit away from the origin.

In this talk, we will construct new one-parametric families of embedded hypersurfaces with constant mean curvature (CMC) into the (n + 1)-dimensional unit sphere. These hypersurfaces are embeddings of the form $\phi: S^k \times S^{n-k-1} \times S^1 \longrightarrow S^{n+1}$ and are obtained by studying a system of ordinary differential equations.

There are very few other families of one-parametric families of CMC in S^{n+1} :

- The family of spheres $S^n(r)$ with radius smaller than 1.
- The Clifford hypersurfaces $S^k(\mathbf{r}) \times S^{n-k}(\sqrt{1-r^2})$.
- The rotational CMC hypersurface which also can be found by solving a system of ordinary differential equations and are embeddings of the form $\phi: S^{n-1} \times S^l \longrightarrow S^{n+1}$.

The technique to study the new examples is called the continuation method and it is similar to the techniques used by the presenter to find new periodic solutions of the n-body problem.

To join us online use the following link: <u>https://ccsu.webex.com/meet/gotchev</u> For further information: <u>gotchevi@ccsu.edu</u>; 860-832-2839; <u>http://mathcolloquium.sites.ccsu.edu/</u>